
The growth of sophistication in machine capabilities 
must go hand in hand with growth of sophistication in 
human–machine interaction capabilities. To continue 
advancement as we build today’s intelligent machines, 
designers need formative tools for creating sociotech-
nical systems. In this article, we will briefly assess the 
appropriateness of “levels of automation” as a tool for 
designing human–machine systems. Additionally, we 
present coactive design and interdependence analysis 
as a viable alternative tool moving forward into more 
advanced and sophisticated human–machine systems.
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Introduction
As any craftsman knows, having the right 

tool for the job makes all the difference. Sadly, 
adequate tools are lacking for the design of 
sociotechnical systems. The most widely known 
approach, which underpins many current efforts 
to build intelligent machines, is known as “levels 
of automation” (LOA). As the design of increas-
ingly intelligent machines has brought new issues 
and options in human–machine interaction and 
teamwork to the fore, some researchers have 
increasingly expressed serious misgivings about 
the approach (Defense Science Board, 2012; 
Feigh & Pritchett, 2014; Johnson, Bradshaw, 
Feltovich, Hoffman, et al., 2011). The debate is 

not only about the theoretical adequacy of the 
constructs that underlie LOA but also about prag-
matics: Does the LOA approach, when used as a 
tool, provide adequate guidance to designers of 
human–machine systems?

In this article, we will briefly assess the 
appropriateness of LOA as a tool for designing 
increasingly sophisticated human–machine sys-
tems. Additionally, we present interdependence 
analysis as a viable alternative tool moving for-
ward into more advanced and sophisticated 
human–machine systems.

What Do Designers Need?
Design, as a verb, is about conceiving and cre-

ating. Designers of any system need to represent 
the components of the system and how they fit 
together. For sociotechnical systems, these com-
ponents mean both the machine and the human. 
When designing something that performs a func-
tion, designers also need to represent the process 
or flow of activity necessary for that function. 
When creating something new, it is difficult if 
not impossible to anticipate all consequences of 
design choices, but that difficulty should not deter 
designers from pursuing tools that aid them in 
such predictions. For distributed, multiparty sys-
tems, which all sociotechnical systems are, a key 
capability to predicting performance is identify-
ing and understanding causal relations within the 
work process. As such, human–machine design 
tools should be evaluated based on how well they 
represent both the human and machine, the work 
being performed, and the relationships between 
the human and machine throughout the work.

Does LOA Meet the Designer’s 
Needs?

The original LOA concept was presented in 
Sheridan and Verplank’s (1978) seminal work. 
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Parasuraman, Sheridan, and Wickens (2000) 
extended the original concept, arguing for a 
more multidimensional approach that consid-
ered the different information-processing phases 
(information acquisition, analysis, decision, and 
action). Arguing for a more complex model, 
they presented a simplified representation of the 
original work shown in Table 1, which ironi-
cally has been tremendously influential. When 
people think of LOA, they are most likely think-
ing of it as presented in Table 1. Most references 
to LOA follow its abbreviated format of an ordi-
nal list of increasing automation, and as such 
it will be used as the baseline. (Table 1 is the 
most cited version of LOA, according to Google 
Scholar, with 2,211 citations—3 times the num-
ber of citations of the original work; accessed 
May 29, 2017, from https://scholar.google.com/
scholar?cluster=8423741310274212639&hl=en
&as_sdt=0,10). LOA approaches are based on 
function allocation, and the driving question 
is deciding what to automate (Parasuraman et 
al., 2000). So does LOA meet the designer’s 
needs? Table 1 does represent the machine, 
but the human is included only with respect 
to the machine’s actions. Similarly, the work 
being performed is representative of mainly the 
machine’s work. The human activity is explicit 
only in Levels 1, 5, and 6 and is implicit in 
other levels. Each level focuses primarily on a 
momentary action or decision.

An interesting comparison can be made 
between the formulation of LOA in Table 1 and 

the original LOA work. The table in the original 
version was significantly bigger and more com-
plex. Each level had not only a description but a 
column for the human function and a column for 
the computer function. Figure 1 is an adaptation 
of just one level, Level 6. The first column cor-
responds to an LOA in Table 1, but the descrip-
tion is labeled a “description of interaction” in 
the original work. The second column represents 
the human functions in the activity, and the third 
represents the functions the computer performs. 
This representation shows that two parties are 
involved in the activity more clearly than Table 
1. Interestingly, arrows were used between the 
second and third columns in the original work, 
creating a small causal diagram. These arrows 
represent a work flow with dependencies con-
necting the functions. Each “level” in the origi-
nal LOA models the full work process, not just 
an isolated moment within the work. This pro-
vides a richer context for understanding any 
given aspect of automation and supports a better 
understanding of the implication of design 
choices.

Are There Viable  
Alternatives to LOA?

Several alternatives to LOA have been pro-
posed. For example, shared control (Sheridan, 
1992) is an early approach that broke from the 
traditional function allocation approach of LOA. 
Mixed-initiative interaction (Allen, Guinn, & 
Horvitz, 1999) went further, proposing that joint 

Table 1: The 10 Levels of Automation Identified in Sheridan and Verplank (1978) as Presented in 
Parasuraman, Sheridan, and Wickens (2000)

Level Description

High 10.  The computer decides everything and acts autonomously, ignoring the human.
    9.  The computer informs the human only if it, the computer, decides to.
    8.  The computer informs the human only if asked, or
    7.  The computer executes automatically, then necessarily informs the human, and
    6.  The computer allows the human a restricted time to veto before automatic execution, or
    5.  The computer executes that suggestion if the human approves, or
    4.  The computer suggests one alternative, or
    3.  The computer narrows the selection down to a few, or
    2.  The computer offers a complete set of decision/action alternatives, or
Low   1.  The computer offers no assistance; the human must take all decisions and actions.
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activity is about interaction and negotiation. Col-
laborative control (Fong, 2001) introduced the 
idea that both parties may participate simultane-
ously in the same action, which also breaks with 
LOA. Klein, Woods, Bradshaw, Hoffman, and 
Feltovich (2004) proposed shifting focus from 
what should be automated to how to support 
teaming. They proposed 10 challenges for making 
automation a “team player” (Klein et al., 2004). 
Each of these alternatives to LOA contributes 
valuable insights into human–machine interaction 
and identifies new issues that have arisen since 
LOA was first conceived. The need to advance 
beyond the limitations of LOA is not a criticism 
of the work as a whole, merely a desire to con-
tinue advancement. This need was anticipated 
by the originators of the concept who predicted 
the “need for improved man-computer interac-
tion will increase, not diminish” (Sheridan & 
Verplank, 1978, p. 1-10). All of these alternative 
approaches share a common goal of improv-
ing the guidance provided to designers building 
human–machine systems.

Our alternative to LOA is based on interde-
pendence. Instead of considering how to allocate 
functions, the primary question is how to sup-
port interdependence. Coactive Design (John-
son, Bradshaw, Feltovich, Jonker, et al., 2011), 
is based on joint activity theory (Bradshaw, Fel-
tovich, & Johnson, 2011; Klein et al., 2004; 
Klein, Feltovich, Bradshaw, & Woods, 2005) 
and is a generalization of Herbert Clark’s (1996) 
work in linguistics. We coined the term coactive 
as a way of characterizing the activity. Besides 

implying more than one party is involved in the 
activity, the term coactive is meant to convey the 
type of involvement. It is meant to convey the 
reciprocal and mutually constraining nature of 
actions and effects that are conditioned by coordi-
nation. Consider an example of playing the same 
sheet of music as a solo versus a duet. Although 
the music is the same, the processes involved are 
very different (Clark, 1996). The implication is 
that the design of the process, in other words, the 
automated algorithm, must be different for joint 
activity. All “intermediate levels” of automation 
are joint activity, not cleanly separable functions 
to be allocated in isolation, thus the importance 
for designers to build algorithms not just to do 
work but to support interdependence.

Shifting the designer’s focus toward interde-
pendence addresses a common misconception 
with LOA: that we are simply choosing what to 
automate as if it were a binary decision. How-
ever, “the simplistic description of ‘automatic’ 
and ‘manual’ control does not apply to many 
systems” (Gao & Lee, 2006). Coactive Design 
encourages thinking of the work as truly joint—
coactive—and the binary options are just degen-
erate cases where the situation does not permit 
coordination. To effectively exploit automa-
tion’s capabilities (versus merely increasing 
automation), we must coordinate the taskwork—
and the interdependence it induces among play-
ers in a given situation—as a whole. We believe 
that increased effectiveness in human–machine 
systems hinges not merely on trying to make 
machines more independent through their  

Figure 1. Altered excerpt of Sheridan and Verplank’s (1978) original Level 6 automation. The purpose of 
this example was to incorporate all the basic elements in a single level. It more clearly shows that two parties 
(computer and human) are involved in the activity, models the work flow, and expresses the casual relationships 
between the human and machine within the work.
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automation but also on striving to make them 
better team players.

Coactive Design proposes three essential 
interdependence relations: observability, pre-
dictability, and directability (Johnson et al., 
2014). Observability means making pertinent 
aspects of one’s status, as well as one’s knowl-
edge of the team, task, and environment, observ-
able to others. Predictability means that one’s 
actions should be predictable enough that others 
can reasonably rely on them when considering 
their own actions. Directability means one’s 
ability to influence the behavior of others and 
complementarily be influenced by others. There 
are certainly additional types of interdependence 
relationships, such as explainability and trust, 
but we view these three as foundational to the 
others. These relationships are also consistent 
with long-standing principles in human-centered 
design that suggest high-level performance is 
achieved by “ensuring that the human has the 
capability to monitor the system, that they 
receive adequate feedback on the state of the 
system, and that the automation functions in pre-
dictable ways” (Billings, 1997, p. 39). Billing’s 
(1997) statement clearly speaks to the impor-
tance of observability and predictability. One of 
the common results found in LOA studies is that 
situation awareness significantly decreases with 
“higher” LOA (Kaber, Onal, & Endsley, 2000). 
Situation awareness, as defined by Endsley and 
Kiris (1995), is about perception (observability) 
and projection (predictability), so the failure of 
automation to support them explains these 
results.

The importance of these three interdepen-
dence relationships can be seen throughout auto-
mation literature with many references to observ-
ability (often referred to as transparency; Gao & 
Lee, 2006; Klein et al., 2004; Wiener, 1989), pre-
dictability (Kirlik, Miller, & Jagacinski, 1993; 
Klein et al., 2004; Rovira, McGarry, & Parasura-
man, 2007; Wiener, 1989), and directability 
(Klein et al., 2004). Parasuraman et al. (2000) 
acknowledge the challenges of function alloca-
tion and state, “The performance of most tasks 
involves interdependent stages that overlap tem-
porally in their processing operations” (p. 287, 
italics added by author for emphasis). Even when 
not called out directly, the interdependence  

relations can be found in results of some research-
ers who note how the elements of human–
machine interaction “must be suitably matched” 
(Degani, Ames, & View, 2002). We propose that 
observability, predictability, and directability are 
core interdependence relationships that deter-
mine such suitability.

One advantage of coactive design is that its 
focus on core interdependence relationships can 
provide a formative tool for designers called inter-
dependence analysis (IA; Johnson et al., 2014). 
Johnson et al., 2014, and Johnson et al., 2017, pro-
vide specific details on the interdependence analy-
sis tool briefly discussed here. One of the limita-
tions of LOA is that its predictive power derives 
from comparison of two different levels through 
empirical evaluation. Only through such evalua-
tion does one understand how automation changes 
affect the nature of work in the human–machine 
system. It is a summative analysis. Summative 
assessment is important, but designers also need 
formative tools to guide the initial design. The 
need for formative tools is consistent with Kirlik et 
al. (1993), who emphasize “the importance of 
understanding why cognitive demands are present, 
prior to determining a strategy for aiding the oper-
ator in meeting these demands” (p. 950). Under-
standing and designing for interdependence can 
provide this type of guidance. It is important to 
understand not just what work the automation is 
doing but what needs to be observable, predict-
able, and directable in order to provide a designer 
this predictive power. IA provides insight into 
when situation awareness is adequately supported 
and when it is not. It can inform the designer of 
what is and is not needed, what is critical, and what 
is optional. Most importantly, it can indicate how 
changes in capabilities affect relationships. Unlike 
LOA, which really provides insight into what 
could be automated, interdependence analysis 
helps one understand what should be automated. 
(The original wording used by Parasuraman et al., 
2000, is should, indicating a prescriptive model 
rather than a descriptive statement, but they clarify 
this wording by stating, “Our model does not 
therefore prescribe what should and should not be 
automated in a particular system”; p. 286).

Another key difference between LOA and 
coactive design is that we propose inverting the 
relationship between automation and interaction. 
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LOA-based approaches choose what to auto-
mate, which dictates interaction. The interaction 
design is not addressed. As designers look to 
automate work, the work is decomposed and 
distributed, creating interdependencies. These 
interdependencies are what effects performance, 
and we propose they are what is predictive of 
human–machine system performance. As such, 
they are what designers must consider in order 
to better understand how people actually interact 
with automation and to be predictive of human–
machine system outcomes. The fundamental 
principle of coactive design is that interdepen-
dence must shape automation (Johnson, Brad-
shaw, Feltovich, Jonker, et al., 2011). So what is 
the significance of the interdependence shaping 
automation instead of automation shaping inter-
action? When automation choices dictate inter-
action, one is limited to summative assessment. 
Designing for interdependence determines what 
is observable, predictable, and directable. This 
determination in turn shapes the interaction and 
the underlying automation, thereby permitting 
formative assessment due to the major role inter-
action plays in overall performance.

As a brief example, consider the task of plan-
ning footsteps for a humanoid robot. LOA might 
provide a set of LOAs, such as providing a set of 
alternative paths (Table 1, Level 3), providing a 
single option (Level 4), executing the suggested 
plan on approval (Level 5), and executing and 
automatically informing the human if asked 
(Level 8). What are the risks with each option? 
How does the interaction change? Can there be 
any other interaction with the system? As a 
design tool, LOA is silent on all of these key 
design questions.

Now consider Figure 2, which shows what an 
IA might look like for the same design problem. 
Considering our designer’s needs stated earlier, IA 
models both the human (far right column) and the 
machine (both algorithms and interface element 
columns). IA also models the work. Similar to 
cognitive task analysis, the column under “Capac-
ities” breaks down different aspects of the work 
involved in the task. Most importantly, IA models 
the potential interdependencies between the 
human and machine. Interdependencies are cap-
tured in the color-coded columns 4 through 8, 
which consider how each can support the other. 
For systems with designed components, these 
components can also be represented, as depicted 
by the right-hand columns, which capture the dif-
ferent work flow alternatives in a graph structure. 
This graph allows the IA table to model multiple 
control paradigms simultaneously. The observ-
ability, predictability, and directability require-
ments, in the “OPD” column, correlate to interface 
elements to meet human interaction requirements 
and drive algorithm design. IA also includes a 
color-coding scheme that broadly captures how 
well both the human and machine can perform in 
different roles. Pathways crossing red are risky 
due to lack of information. Yellow paths are less 
risky, but if they pass through both the human and 
machine, each can potentially mitigate the other’s 
weaknesses. Each pathway is a potential alterna-
tive, and the observability, predictability, and 
directability requirements help one understand 
how interaction changes with each option.

Summary
The growth of sophistication in machine 

capabilities must go hand in hand with growth 

Figure 2. Example interdependence analysis of planning footsteps for a humanoid robot.
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of sophistication in human–machine interaction 
capabilities. To continue advancement as we 
build today’s intelligent machines, designers 
need formative tools for creating sociotechni-
cal systems. LOA-based approaches based on 
function allocation are not formative and do 
not effectively model the human or the work. 
As an alternative to LOA, we propose design-
ing for interdependence—coactive design. IA 
provides a formative tool that explicitly models 
the machine, the human, and the work. We 
further propose that interdependence should 
shape automation design, instead of letting 
automation design dictate interaction. It is the 
interdependencies that are predictive of human–
machine system outcomes, thus their growing 
importance as we develop tomorrow’s advanced 
human–machine systems.
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